lunes, 24 de mayo de 2010


Caldera

Una Caldera es un dispositivo cuya función principal es calentar agua. Cuando supera la temperatura de ebullición, genera vapor. El vapor es generado por la absorción de calor producido de la combustión del combustible. La caldera se encarga de absorber el calor proveniente de las áreas del economizador, el horno, el supercalentador y el vapor recalentado.

Las calderas pueden ser eléctricas, a gasóleo o combustible diésel, a gas natural, gas butano, etcétera.

Las calderas pequeñas, exclusivamente para agua caliente sanitaria, se suelen conocer como calentadores (ej. para emplear en la ducha, en el fregadero de la cocina, etc.).

Se conoce como caldera de vapor a aquella unidad en la cual se puede cambiar el estado del fluido de trabajo (agua) de líquido a vapor de agua, en un proceso a presión constante y controlado, mediante la transferencia de calor de un combustible que es quemado en una cámara conocida como "hogar". En algunos casos se puede llevar hasta un estado de vapor sobrecalentado.

Las calderas pueden ser eléctricas, a gasóleo o combustible diésel, a gas natural, gas butano, etcétera.

Las calderas pequeñas, exclusivamente para agua caliente sanitaria, se suelen conocer como calentadores (ej. para emplear en la ducha, en el fregadero de la cocina, etc.).

Se conoce como caldera de vapor a aquella unidad en la cual se puede cambiar el estado del fluido de trabajo (agua) de líquido a vapor de agua, en un proceso a presión constante y controlado, mediante la transferencia de calor de un combustible que es quemado en una cámara conocida como "hogar". En algunos casos se puede llevar hasta un estado de vapor sobrecalentado.

TIPOS DE CALDERA

La mayor seguridad de las calderas de tubos de agua se reconoció hace mas de cien años, y estas en general han desplazado a las de tipo de tubos de humos excepto en casos especiales, como los diseños de calderas unitarias pequeñas y las de calor de desecho para aplicaciones de presión media y baja.

Las calderas de tubos de agua se encuentran como 5000 lb., hasta tan alta como 9 000 000 lb. de vapor hora.

Al coordinar los diversos componentes; calderas, hogares, quemadores de combustible, ventiladores y controles, los fabricantes de calderas han producido una amplia serie de unidades generadoras de vapor, estandarizadas y económicas, con capacidades hasta de 550 000 lb. de vapor hora, que queman combustoleo o gas natural.

La caldera del tipo de dos domos que viene en capacidades hasta de 1 200 000 lb. de vapor por hora, este tipo de caldera sirve de diseño modular para la mayoría de las calderas.

Las calderas que utilizan bancos de tubos directamente conectados a los domos de vapor y de agua están limitadas, en general, a una presión máxima del vapor de 1650 lb/pulg2 , ya que el amplio espaciamiento entre los tubos requerido para mantener una eficiencia de la absorción del calor.

Se utilizan diseños de calderas para uso general, de presión y temperatura altas con capacidades que van desde 500 000 hasta 9 000 000 lb de vapor por hora pero en general pueden clasificarse como calderas del tipo radiante. En estas se genera poco vapor, o nada, por superficies absorbentes de calor por convección, ya que casi todo el vapor se genera en los tubos que forman las paredes que cubren el hogar del calor irradiado hacia estos tubos procedentes de los gases calientes de la combustión, este tipo de caldera se alimenta con gas o combustoleo, o con ambos.

Las calderas de tipo domo, de circulación natural o forzada se restringen a una presión máxima de alrededor de 2600 lb/pulg2 , en la salida del sobrecalentador, debido a las características de circulación y de separación de vapor. Sin embargo, las calderas de tipo flujo forzado y paso único no se restringen a nivel alguno de presión por los limites de circulación.

En calderas de flujo forzado y paso único, el agua generalmente fluye del economizador a los tubos de las paredes del hogar, de ahí se dirige hacia los tubos de cubierta de paso de convección de gas y hacia el sobrecalentador primario. Por lo común, la transición hacia la fase vapor se inicia en los circuitos del hogar y, dependiendo de las condiciones de operación y del diseño, se completa en la cubierta de paso del gas de convección o en el sobrecalentador primario. El vapor que procede del sobrecalentador primario pasa al secundario. Se cuenta también con uno o más recalentadores para volver a calentar el vapor a baja presión.

PARTES DE UNA CALDERA

QUEMADORES

El propósito principal de un quemador es mezclar y dirigir el flujo de combustible y aire de tal manera que se asegure el encendido rápido y la combustión completa. En los quemadores de carbón pulverizado, una parte del 15 al 25% del aire, llamada aire primario, se mezcla inicialmente con el combustible para obtener un encendido rápido y actuar como un medio de transporte del combustible. La porción restante o aire secundario se introduce a través de registros en la caja de viento.

El quemador de tipo circular esta diseñado para quemar carbón mineral y puede equiparse para quemar cualquier combinación de los tres combustibles principales, si se toman se toman las precauciones adecuadas para evitar la formación de coque en el elemento carbón, si se esta quemando combustoleo y carbón mineral. Este diseño tiene una capacidad hasta de 165 millones de Btu/h para el carbón, y más elevada para combustoleo o gas.

HOGARES

Un hogar es una cámara donde se efectúa la combustión. La cámara confina el producto de la combustión y puede resistir las altas temperaturas que se presentan y las presiones que se utilizan. Sus dimensiones y geometría se adaptan a la velocidad de liberación del calor, el tipo de combustible y al método de combustión, de tal manera que se haga lo posible por tener una combustión completa y se proporcione un medio apropiado para eliminar la ceniza.

Los hogares enfriados por agua se utilizan con la mayor parte de unidades de calderas, es decir en su gran mayoría, y para todos los tipos de combustible y métodos de combustión. El enfriamiento por agua de las paredes del hogar reduce la transferencia de calor hacia los elementos estructurales y, en consecuencia, puede limitarse su temperatura a la que satisfaga los requisitos de resistencia mecánica y resistencia a la oxidación. Las construcciones de tubos enfriados por agua facilitan el logro de grandes dimensiones del hogar y optimas de techos, tolvas, arcos y montajes de los quemadores, así como el uso de pantallas tubulares, planchas o paredes divisoras, para aumentar la superficie absorbente del calor en la zona de combustión. El uso de hogares con enfriamiento por agua reduce las perdidas de calor al exterior.

Las superficies absorbentes del calor en el Hogar, lo reciben de los productos de combustión, en consecuencia, contribuyen directamente a la generación de vapor, bajando al mismo tiempo la temperatura de los gases que sales del mismo. Los principales mecanismos de transferencia de calor se efectúan en forma simultanea. Estos mecanismos incluyen la radiación entre sólidos que proviene del lecho de combustible o de las partículas de combustible, la radiación no luminosa de los productos de la combustión, la transferencia de calor por convección de los gases del hogar y la conducción de calor a través de los materiales metálicos de los depósitos y tubos. La eficacia de la absorción de las superficies del hogar es influida por los depósitos de ceniza o escoria.

Los hornos difieren en tamaño y forma, en la localización y esparcimiento de los quemadores, en la disposición de la superficie absorbente del calor y de la distribución de los arcos y tolvas. La forma de la llama y su longitud afectan la geometría de la radiación, la velocidad y distribución de absorción del calor

por las superficies enfriadas por agua.

Las soluciones analíticas de la transferencia de calor en los hogares de las unidades generadoras de vapor son extremadamente complejas, y es muy difícil calcular la temperatura de los gases a la salida del hogar por métodos teóricos. Sin embargo, se debe predecir la temperatura de estos gases en forma precisa, ya que esta temperatura determina el diseño del resto de la unidad de la caldera, en particular el del sobrecalentador y del recalentador. Los cálculos deben de basarse en resultados obtenidos en pruebas, complementados por datos acumulados por la experiencia en operación y juicios, basándose en el conocimiento de los principios de la transferencia de calor y de las características de los combustibles y escorias. Este método se suma a los sistemas aventadores de hollín.

SISTEMAS AVENTADORES DE HOLLÍN.

Aun cuando la escorificación y la incrustación de las calderas que queman carbón mineral y combustoleo puedan minimizarse mediante el diseño y la operación apropiados, debe suministrarse equipo auxiliar para limpiar las paredes del hogar y eliminar los depósitos de las superficies de convección, para mantener la capacidad y la eficiencia. Chorros de vapor de agua y de aire lanzados por las toberas de los aventadores de hollín desalojan la ceniza seca o sintetizada y la escoria, las que entonces caen en tolvas o se van junto con los productos gaseosos de la combustión al equipo de eliminación.

Los tipos aventadores de hollín varían en relación con su ubicación en la unidad de la caldera, la severidad de la ceniza o las condiciones de la escoria, y la disposición de las superficies que absorben calor.

CENIZA

Las calderas que queman carbón mineral pulverizado pueden diseñarse para que funcionen con ceniza seca o con bigotera. Las de tipo de ceniza seca son apropiadas en particular para aquellos carbones con temperaturas altas de fusión, la ceniza que choca con las paredes enfriadas por agua del hogar pueden extraerse con facilidad. El hogar con bigotera utiliza carbones que tienen temperaturas bajas de fusión de sus cenizas y se diseña para que tenga temperaturas elevadas cerca del piso, con lo que se logra que la ceniza se funda y pueda sangrarse, es decir que tenga una caída natural.

La ceniza, al sintetisarse o fundirse, forma depósitos sobre las paredes del hogar, superficies de la caldera y en los tubos del sobrecalentador, lo que reduce la absorción de calor, aumenta la perdida de tiro y posiblemente provoca el sobrecalentamiento de los tubos. Pueden ocurrir dos tipos generales de acumulación de escoria sobre las paredes. Pueden ocurrir dos tipos generales de acumulación de escoria sobre las paredes del hogar y superficies de convección.

Se produce escorificación cuando partículas de ceniza fundidas, o parcialmente fundidas, arrastradas en el gas chocan contra una pared o en la superficie de un tubo, se enfrían y se solidifican.

Se tiene la incrustación, cuando los constituyentes volátiles de la ceniza se condensan sobre partículas de ceniza muy fina, sobre los tubos de convección y sobre los depósitos existentes de ceniza se condensan sobre partículas de ceniza muy fina, sobre los tubos de convección y sobre los depósitos existentes de ceniza, a temperaturas en las que estos constituyentes volátiles se mantienen líquidos y se les permite reaccionar químicamente para formar depósitos ligados.

Una solución para evitar estos problemas, es el uso de aditivos, como la domita, la cal, y la magnesia, son eficaces en la reducción de la resistencia sintetizada de la ceniza. La domita también es eficaz para neutralizar el ácido en el gas de la combustión y eliminar la condensación y la obstrucción subsiguiente en el extremo frío de los precalentadores.